公文溜溜 >工作计划

六年级数学比教案模板5篇

其实无论开展什么阶段的教学工作,都要认真写好一份教案,根据教学目标制定一份教案,可以使接下来的教学工作顺利,公文溜溜小编今天就为您带来了六年级数学比教案模板5篇,相信一定会对你有所帮助。

六年级数学比教案模板5篇

六年级数学比教案篇1

素质教育目标

(一)知识教学点

1.使学生理解掌握比例的意义和基本性质。

2.认识比例的各部分的名称。

(二)能力训练点

1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

2.培养学生的观察能力、判断能力。

(三)德育渗透点

对学生进一步渗透辩证唯物主义观点的启蒙教育。

教学重点:

比例的意义和基本性质。

教学难点:

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

教具学具准备:

小黑板、投影片、投影仪。

教学步骤

一、铺垫孕伏

教师出示复习题,回忆有关比的知识。

1.什么叫做比?

2.什么叫做比值?

3.求下面各比的比值:

4.上面哪些比的比值相等?

学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)

二、探究新知

1.比例的意义。

出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

从上表中可以看到,这辆汽车,

第一次所行驶的路程和时间的比是______;

第二次所行驶的路程和时间的比是______。

这两个比的比值各是多少?它们有什么关系?

(1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式

(2)由教师告诉学生:象4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)

师问:什么叫做比例:组成比例的关键是什么?

生答:表示两个比相等的式子叫做比例。(板书)

引导学生议论、交流后板书:表示两个比相等的式子叫做比例。(在“两个比相等”下边划“”。)

(3)做一做

下面哪组中的两个比可以组成比例?把组成的比例写出来。

①6∶10和9∶15

②20∶5和1∶4

第①题由教师引导学生完成,思路如下:

所以:6∶10=9∶15

其余各题分组讨论后由学生独立完成。

(4)填空

①如果两个比的比值相等,那么这两个比就()比例。

②一个比例,等号左边的比和等号右边的比一定是()的。

2.比例的基本性质。

(1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边叙述边板书如下)

(2)让学生看下面这些比例,说出它的外项和内项是多少?

4.5∶2.7=10∶6

6∶10=9∶15

(3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

以80∶2=200∶5为例,指名来说明。(师边板书如下)

外项积是:80×5=400

内项积是:2×200=400

80×5=2×200

(4)由学生自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。

(5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)

(板书课题:加上“和基本性质”,使课题完整。)

(6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?

指名回答后,师板书:

(7)做一做

应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50

3.阅读课本第9、10页的内容并填空。

三、巩固发展

1.说一说比和比例有什么区别。

讨论后指名说明:

比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。

2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1)6∶9和9∶12

(2)1.4∶2和7∶10

4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)

2、3、4和6

四、全课小结

这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。

五、布置作业练习一第3题。

六年级数学比教案篇2

本册教学目标:

这一册教材的教学目标是,使学生:

1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。

2. 理解倒数的意义,掌握求倒数的方法。

3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。

5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。

6. 能在方格纸上用数对表示位置,初步体会坐标的思想。

7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。

8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。

9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12. 养成认真作业、书写整洁的良好习惯。

第一单元 位置

单元教学目标:

1. 在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 能在方格纸上用数对确定位置。

教学内容 位置(一) 新授课 新授

教学目标 1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 使学生能在方格纸上用数对确定位置。

教学重点 能用数对表示物体的位置。

教学难点 能用数对表示物体的位置,正确区分列和行的顺序。

教具准备

教学过程 一、 导入

1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、 新授

1、 教学例1

(1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、 小结例1:

(1) 确定一个同学的位置,用了几个数据?(2个)

(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、 练习:

(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、 教学例2

(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(3) 同桌讨论说出其他场馆所在的位置,并指名回答。

(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

三、 练习

1、 练习一第4题

(1) 学生独立找出图中的字母所在的位置,指名回答。

(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

3、 练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点a向右平移5个单位,位置在哪里?哪个数据发生了改变?点a再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3) 照点a的方法平移点b和点c,得出平移后完整的三角形。

(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

四、 总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?

五、 作业

练习一第1、2、5、7、8题。

六年级数学比教案篇3

教学内容

利率

教材第11页。

教学目标

1.经历小组合作调查,交流储蓄知识,解决和利率有关的实际问题的过程。

2.知道本金、利率、利息的含义,能正确解答有关利息的实际问题。

3.体会储蓄对国家和个人的重要意义,积累关于储蓄的常识和经验。

重点难点

重点:理解利率与分数、百分数的含义。

难点:解决有关“利率”的实际问题。

教具学具

课件。

教学过程

一、创设情境,激趣引导

师:同学们,快要到年底了,许多同学的爸爸妈妈的单位里会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?爸爸妈妈会不会把一大笔现金放在家里?为什么?

生1:一般情况下,爸爸妈妈应该把钱存入银行。

生2:爸爸妈妈不会把一大笔现金放在家里,这样太不安全了,他们会存入银行。

生3:把钱存入银行不仅安全,还可以获得利息呢。

……

师:人们常常把暂时不用的钱存入银行或信用社储蓄起来。这样不仅可以支援国家建设,也使个人用钱更加安全和有计划,还可以增加一些收入。钱存入银行后增加的部分就是利息,今天我们就重点研究与“利息”相关的问题。

?设计意图:借助主题图吸引学生注意力,引导学生仔细观察获取有价值的数学信息,为下面提出问题,解决问题做好准备】

二、探究体验,经理过程

师:先来大胆地猜一猜,你觉得利息的多少与什么因素有关呢?

生1:不可能说钱存入银行的时间长短不同,而所得的利息一样,所以利息的多少应该与钱存入银行的时间有关。

师:对,利息的多少与存入的时间长短有关,存入的这段时间也就是我们平时所说的存期。

生2:不可能说存入银行的钱不管多少所得的利息都一样,所以利息的多少应该与存入银行的钱的多少有关,存入的钱越多,相同时间内的利息应该越多。

师:说的很有道理,我们把存入银行的钱叫做本金。存期相同的情况下,本金越多,利息就越多。

生3:在学习计算应纳税额时,我们知道应纳税额的多少与税率的高低有关,我想是不是利息的多少也应该与利率有关呢?

生4:我们小组的同学进行过调查,在银行内很显眼的位置公布着不同存期的利率,利息的多少一定与利率有关。

师:说得很好。我们把单位时间(如1年、1月、1日等)内的利息与本金的比率叫做利率。存期不同,利率一般也是不同的。那么,谁愿意把课前调查知道的有关储蓄的其他知识与大家做一下交流呢?

学生可能会说:

o我知道了储蓄的种类有整存整取、零存整取和活期。

o我知道了整存整取的利率又分为三个月的、半年的、一年的、二年的、三年的、五年的,存期不同利率也不一样。

o我知道了活期的利率最低,但是随时用钱随时取,比较方便。

……

师:你们知道利息究竟怎么计算吗?

生:利息的计算公式是利息=本金×利率×时间。

师:根据国家经济的发展变化,银行存款的利率有时会有所调整。下面是20xx年7月中国人民银行公布的存款利率。(课件出示:教材第11页利率表)

学生观察利率表。

师:能运用你所掌握的利率的相关知识帮王奶奶解决问题吗?试一试。(课件出示:教材第11页例4)

学生尝试独立解答问题;教师巡视了解情况,指导个别有困难的学生。

师:谁愿意说说你的想法和算法?

生1:首先我们要明确的是,到期后王奶奶可以取回的钱除了本金还有利息,本金我们已经知道是5000元,所以最关键的就是算出利息。根据利息的计算公式“利息=本金×利率×时间”,我们从上面的利率表中对应找到存期两年的利率是3.75%,这样就可以算出利息5000×3.75%×2=375(元);再加本金,到期后可以取回的钱就是5000+375=5375(元)。

生2:我们也可以把本金5000元看作单位“1”,这样每年的利息就是5000元的3.75%,存入2年,所得利息就是5000元的(3.75%×2);这样到期时可以取回的钱就可以列成算式5000×(1+3.75%×2)=5375(元)。

只要学生解答正确,讲解合理就要及时给予肯定和鼓励。

?设计意图:在学生课前调查的基础上,引导学生进行交流汇报,在学生的交流讨论中完成新知识的探究学习,激发学生的学习兴趣】

三、课末总结,梳理提升

师:同学们谈谈学习本课有什么新的收获。请同学们回家与父母商量,把自己过年的压岁钱存入银行,按活期储蓄存到学期末,看看你从银行取款时,本金和利息共多少元?

?设计意图:实践延伸,给学生提出具有挑战性的要求,让学生获得实践体验,感受到所学知识能运用于生活的乐趣】

利率

教学反思

1.本节课我始终“以学生为本”,强调让学生通过自己的活动归纳出利息的计算方法,增加了学生对知识的理解和深化。以往计算利息时,学生经常把时间漏乘,这是学生容易忽视的地方。通过简短的争论,练习时学生很少把时间漏乘,从简短的争论中,引导学生发现方法,要比教师反复强调效果好得多。

2.储蓄与人们的生活联系密切,本节课是在百分数的知识和学生已有生活经验的基础上进行教学的。注重数学知识与生活实践的联系。我们知道学习数学的目的是为了应用,教师在设计练习时,要有意识地引导学生把所学知识运用到生活实践中去,体现数学服务于生活的教育理念。

课堂作业新设计

a类

郑老师买了3000元的国债,定期五年,年利率是3.81%。到期他一共可以取出多少元钱?

(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的具体问题)

b类

为了给亮亮准备2年后上大学的学费,他的父母计划把10000元钱存入银行,你认为哪种储蓄方式更好呢?为什么?

存期年利率

一年4.14%

二年4.77%

(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的实际问题)

参考答案

课堂作业新设计

a类:

3000×3.81%×5+3000=3571.5(元)

b类:

存一年再存一年:10000×4.14%×1=414(元)

(10000+414)×4.14%×1+414≈845.14(元)

直接存入两年:10000×4.77%×2=954(元)

954>845.14直接存入两年比较合适。

教材习题

第11页“做一做”

8000×4.75%×5=1900(元) 8000+1900=9900(元)

六年级数学比教案篇4

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

教学重难点:

正比例的意义以及判断两种相关联的量是不是成正比例。

教学准备:

教学光盘

教学预设:

一、导入新课

1、谈话:老师准备去水果超市买一些苹果,已知苹果每千克的单价是6元,如果我准备买1千克,你能求出什么?(总价)

2、出示表格

已知苹果每千克的单价是6元

根据学生的回答将表格填写完整。

提问:如果买()千克,总价()元……;

观察表格,你们发现了什么?(当学生回答:买的千克数越多,总价就越高)

师小结:像这样一种量变化,另一种量也随着变化,我们就把这两种量叫做相关联的量[板书:两种相关联的量]

在这里——“买的千克数”和“总价”就是两种相关联的量。

二、探索新知

(一)体会两种相关联的量

1、出示例1表格

2、提问:这张表格中的两个量是否相关联?

学生发现:时间变化,路程也随着变化,路程和时间是两种相关联的量。(补充板书)

(二)探索两个变量之间的关系

1、谈话:请同学们进一步观察表中的数据,找一找这两种量的变化有什么规律?

启发学生从“变化”中去寻找“不变”。

学生可能会从不同的角度去寻找规律。

2、教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

3、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

路程

根据学生的回答,教师板书关系式:时间=速度(一定)

4、教师对两种量之间的关系作具体说明:当路程和对应时间的比的比值总是一定,也就是速度一定时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

(板书:路程和时间成正比例)

反问:在什么条件下行驶的路程和时间呈正比例?

三、教学“试一试”

1、要求学生根据表中的已知条件先把表格填写完整。

2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

四、抽象表达正比例的意义

1、引导学生观察上面的两个例子,说说它们有什么共同点。

2、启发学生思考:如果用字母x和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书关系式/x=(一定)

五、巩固练习

1、完成第63页的“练一练”。

先让学生独立思考并作出判断,再要求说明判断理由。你是怎样判断的?

2、做练习十三第1~3题。

第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

第2题先让学生独立进行判断,再指名说判断的理由。

第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

六、全课小结

通过这节课的学习,你有哪些收获?

七、课堂作业:

完成补充习题的相关练习

补充练习:

1、判断下面每题中的两种量是不是成正比例,并说明理由。

①每小时织布米数一定,织布总米数和时间。

②每人树植棵数一定,参加植树人数和植树总棵数。

③订阅《中国少年报》的份数和钱数。

④小新跳高的高度和他的身高。

⑤长方形的宽一定,它的面积和长。

2、选择。

a和b相关联的两种量,下面哪个式子表示a和b成正比例?

①a+b=12②=5③ab=④a-b=3.8⑤b=7a

3、x、、z是三种相关联的量,已知x×=z。

当()一定时,()和()成正比例。

六年级数学比教案篇5

教材分析

这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

学情分析

在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

教学目标

逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

教学重点和难点

1、 能确定单位“1”,理清题中的数量关系。

2、利用题中的等量关系用方程解答。

教学过程

一、1、苹果的重量是x千克,梨的重量比苹果多5千克 。

⑴、梨的重量比苹果多了( )千克。

⑵、梨的重量是( )千克。

2、钢笔x元,比毛笔少了3元 。

⑴、钢笔比毛笔少了( )元。

⑵、毛笔是( )元。

3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授课

1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?

(1)卖了 是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

(4)指名列出方程。解:设运来苹果x千克。

x-36=20

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。

解:设航模小组有人。

(1+)=25

=25÷

=20

答:略。

三、小结

1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

会计实习心得体会最新模板相关文章:

六年级数学个人工作计划6篇

六年级下册数学工作计划8篇

部编版六年级语文上册教案5篇

小学六年级数学教学工作总结7篇

小学数学六年级个人工作总结8篇

六年级上册数学教学总结8篇

小学六年级数学工作计划范文8篇

六年级数学老师学期工作总结8篇

小学六年级数学备课组工作总结8篇

六年级下数学教学工作总结范文8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    39649

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。